Mathématiques

Question

Bonjour, pourriez vous m'aider s'il vous plaît ! merci d'avance !!

Montrez que la suite récurrente (Un) définie par u0 = 1 et Un+1 = sqrt(2 + Un) est convergente et déterminez sa limite.

1 Réponse

  • Réponse :

    Bonjour,

    Explications étape par étape

    [tex]u_0=1\\u_{n+1}=\sqrt{2+u_n} \\[/tex]

    1)

    [tex]1\leq u_n\leq 2\\Initialisation:\\1\leq u_0\leq 2\\H\' er\' edit\' e:\\1\leq u_n\leq 2\\2+1\leq 2+u_n\leq 2+2\\\sqrt{3} \leq \sqrt{2+u_n} \leq \sqrt{4} \\1\leq \sqrt{3} \leq u_{n+1}\leq 2\\[/tex]

    2)

    [tex]u_n\leq u_{n+1}\\Initialisation:\\u_0\leq u_1\\1\leq \sqrt{3} \est\ vrai\\\\H\' er\' edit\' e:\\u_n\leq u_{n+1}\\2+u_n\leq 2+u_{n+1}\\\\\sqrt{2+u_n}\leq \sqrt{2+u_{n+1}}[/tex]

    La suite est majorée par 2 et croissante, donc convergente.

    Sa limite vaut 2

    Soit x sa limite:

    [tex]x=\sqrt{2+x} \\x²=2+x\\x²-x-2=0\\(x-2)(x+1)=0\\x=-1: impossible\\[/tex]

Autres questions