Mathématiques

Question

Bonjour pouvez vous m'aider sur cette exercice d'intégration ? Merci ​
Bonjour pouvez vous m'aider sur cette exercice d'intégration ? Merci ​

1 Réponse

  • Réponse :

    f(x) =(ax+b)lnx   sur ]1;+oo[ ; dérivée f'(x)=a*lnx+(1/x)*(ax+b)

    Explications étape par étape

    1) On deux inconnues il nous faut donc deux équations

    on sait :

    *que f(2)=0 soit (a*2+b)ln2=0 comme ln 2 n'est pas =0 il faut que 2a+b=0   équation (1)

    * que f'(1)=1 (coefficient directeur de la tangente)

    donc a*ln1+ (1/1)(a+b)=1 or ln1 =0 il reste  a+b=1     équation(2)

    les solutions de ce système sont a=-1 et b=2 (programme de 3ème)

    d'où f(x)=(-x+2)lnx

    2) on note que f(x) est <0 sur ]0;1[ >0 sur ]1;2[  et <0 sur ]2;+oo[

    g(x) doit donc être décroissante puis croissante puis décroissante  c'est donc la courbe 2 (verte) et qui mal représentée sur [1 ;2]  (tracé brouillon)

    3-a) F(x) est une primitive de f(x) si la dérivée F'(x)=f(x)

    Si on dérive F(x)  F'(x)=(2-x)lnx+(1/x)(2x-x²/2)-2+x/2=(2-x)lnx+0

    F(x) est donc une primitive de f(x).

    3-b) Calculons F(1)=0-2+1/4+15/4=2

    Vu le tracé F(x) est bien celle du graphique.Par lecture F(1)=2 (courbe verte).

    3c) Intégrale de 1à 2 de f(x)dx=F(2)-(F1)=il suffit de remplacer et de calculer (rien de compliqué)

    Ceci représente l'aire  comprise entre la courbe et l'axe des abscisses sur [1;2] en u.a.